
Design across layers
achieving more by joining hardware, software, and cryptography

Lachlan J. Gunn
lachlan.gunn.ee

@ lachlan_gunn

including work by N Asokan, Jan-Erik Ekberg, Setareh Ghorshi,
Hans Liljestrand, Thomas Nyman

NANDA, London, UK, 2023-09-11



2

The problem

Memory corruption vulnerabilities are a persistent problem
• Microsoft: consistently 70% of CVEs

Source: Matt Miller, “Trends, Challenges, and Strategic Shifts”, BlueHat IL 2019.



3

Software run-time protection

Memory vulnerabilities can give arbitrary read/write access to memory

Software-based defences helpful but limited
• Canaries
• Software-based control-flow integrity

Problem: Attackers can use software vulnerabilities to attack software-based defences

Solution: Implement defences in hardware, safe from vulnerable software

• Write ^ Execute

• Memory protection

• Address space layout randomisation



4

Cryptographic run-time protection

Problem: Hardware is inflexible

Solution: Multi-purpose hardware primitive that can be used by software in many different ways

In this talk: can cryptography protect data in memory?
• Modern CPUs provide acceleration:

• Intel AES-NI
• ARM Pointer Authentication

Goal: Protect sensitive functionality from vulnerabilities elsewhere in the program



5

Useful Assumptions

W^X
Executable code cannot be modified



6

Useful Assumptions

W^X
Executable code cannot be modified

Control flow integrity
Attacker can’t make program jump to just anywhere

• Direct branches jump to designated addresses
• Calls to function pointers always jump to beginning of functions

LOR em1

PSU mdo, l0, rsi

TA me, tc0

NSE ct3, tur

LOR em1

PSU mdo, l0, rsi

TA me, tc0

NSE ct3, tur



7

Useful Assumptions

W^X
Executable code cannot be modified

Control flow integrity
Attacker can’t make program jump to just anywhere

• Direct branches jump to designated addresses
• Calls to function pointers always jump to beginning of functions

Register safety
Attacker can’t modify registers except by following the program

• Registers part of instruction encoding: can’t change by modifying data in memory
• One register file per thread: no interference from other threads

LOR em1

PSU mdo, l0, rsi

TA me, tc0

NSE ct3, tur

LOR em1

PSU mdo, l0, rsi

TA me, tc0

NSE ct3, tur



8

Program model

Program is split into basic blocks
• Linear instructions followed

by control flow instruction

func1:
add r1, r2, r3
and r1, r4, r1
jmp func2

func2:
store r5, r1
load r1, r8
syscall

func0:
sub r1, r3, r3
xor r5, r2, r1
jmp func2

S Ghorshi, L J Gunn, H Liljestrand, N Asokan, “Towards cryptographically authenticated in-memory data structures”, IEEE SecDev’22



9

Program model

Program is split into basic blocks
• Linear instructions followed

by control flow instruction

Registers provide secure channel between blocks
• Limited communication volume
• Initial state before block X

= final state after a block that can jump to X

func1:
add r1, r2, r3
and r1, r4, r1
jmp func2

func2:
store r5, r1
load r1, r8
syscall

r1, r2, …

r1, r2, … func0:
sub r1, r3, r3
xor r5, r2, r1
jmp func2

r1, r2, …

S Ghorshi, L J Gunn, H Liljestrand, N Asokan, “Towards cryptographically authenticated in-memory data structures”, IEEE SecDev’22



10

Program model

Program is split into basic blocks
• Linear instructions followed

by control flow instruction

Registers provide secure channel between blocks
• Limited communication volume
• Initial state before block X

= final state after a block that can jump to X

Memory controlled by the attacker

• Loads and stores become interactions with A

func1:
add r1, r2, r3
and r1, r4, r1
jmp func2

func2:
store r5, r1
load r1, r8
syscall

r1, r2, …

r1, r2, …

A

func0:
sub r1, r3, r3
xor r5, r2, r1
jmp func2

r1, r2, …

S Ghorshi, L J Gunn, H Liljestrand, N Asokan, “Towards cryptographically authenticated in-memory data structures”, IEEE SecDev’22



11

Functionality #1: Secure Stack

Goal: Store return address stack in memory

Approach: store MAC chain of return address authentication tokens

ret0 ret1

auth0 = HK(ret0, 0) auth1 = HK(ret1, auth0) authn = HK(retn, authn-1)

retn

H Liljestrand, T Nyman, L J Gunn, J-E Ekberg, N Asokan, “PACStack: An authenticated call stack”, USENIX Security 2021.



12

Functionality #1: Secure Stack

Goal: Store return address stack in memory

Approach: store MAC chain of return address authentication tokens
• Single authentication token kept in register authenticates entire return address stack

ret0 ret1

auth0 = HK(ret0, 0) auth1 = HK(ret1, auth0) authn = HK(retn, authn-1)

retn

H Liljestrand, T Nyman, L J Gunn, J-E Ekberg, N Asokan, “PACStack: An authenticated call stack”, USENIX Security 2021.



13

Cryptographic analysis

We reduced the stack’s security to MAC collision probability

Challenge: MAC collisions occur on average after 1.253*2b/2 return addresses
• For b = 16, n = 321 addresses

•

•

H Liljestrand, T Nyman, L J Gunn, J-E Ekberg, N Asokan, “PACStack: An authenticated call stack”, USENIX Security 2021.



14

Cryptographic analysis

We reduced the stack’s security to MAC collision probability

Challenge: MAC collisions occur on average after 1.253*2b/2 return addresses
• For b = 16, n = 321 addresses

Solution: Prevent recognizing collisions by masking each auth
• Pseudo-random mask XOR-red with auth
• Wrong guesses result in segfault

Attack Success w/o Masking Success w/ Masking

Reuse previous auth collision 1 2-b

Guess auth to existing call-site 2-b 2-b

Guess auth to arbitrary address 2-2b 2-2b

H Liljestrand, T Nyman, L J Gunn, J-E Ekberg, N Asokan, “PACStack: An authenticated call stack”, USENIX Security 2021.



15

Evaluation: SPEC CPU 2017 C-language benchmarks

Estimated performance overhead based on 4-cycles per PA instruction
• without masking < 0.5% (geo.mean)
• with masking < 1% (geo.mean)

n=24

n=20

n=16

n=20

n=20

n=16

-0,50% 0,00% 0,50% 1,00% 1,50% 2,00% 2,50% 3,00%

505.mcf_r

519.lbm_r

525.x264_r

538.imagick_r

544.nab_r

557.xz_r

PACStack without masking PACStack with masking

H Liljestrand, T Nyman, L J Gunn, J-E Ekberg, N Asokan, “PACStack: An authenticated call stack”, USENIX Security 2021.



16

Protecting other program data

PACStack only protected return address stack
• Specialised mechanism for a specialised data structure

Can we protect general program data structures?

Challenges:
1. Wide variety of data structures with different performance expectations
2. Limited number of protected registers for arbitrarily many data structures
3. How to stop bad data being stored in the first place?

S Ghorshi, L J Gunn, H Liljestrand, N Asokan, “Towards cryptographically authenticated in-memory data structures”, IEEE SecDev’22



17

Authenticated data structures

Different cryptographic methods have different performance characteristics

Hash chain: O(1) access at one end, O(size) random access
• Useful for stacks

Merkle tree: O(log size) random access
• Useful for trees, vectors, etc.

Each data structure implementation reduces its contents to a single “top MAC”
• Merkle tree reduces all top MACs to a thread-global MAC kept in register

11S Ghorshi, L J Gunn, H Liljestrand, N Asokan, “Towards cryptographically authenticated in-memory data structures”, IEEE SecDev’22



18

Functionality #2: Secure Queue

First-In-First-Out (FIFO) order
• O(1) Read/write from front/back

Hash chains no good here
• Need to be modified at both ends
• Chains need O(size) to update

Queue-specific approach
• Data MACs tie data to insertion order
• Top MAC authenticates head/tail indices
• Achieves normal O(1) performance

S Ghorshi, L J Gunn, H Liljestrand, N Asokan, “Towards cryptographically authenticated in-memory data structures”, IEEE SecDev’22



19

Performance

Microbenchmarks:

OpenCV performance tests:
• 3.42% overhead
• 6.42% with secure random access

Data Structure Number of
operations

Secure Unmodified Overhead

Stack<int> 1000 16 853.65 µs 11.21 µs 1503 x

Queue<int> 1000 16 793.65 µs 11.13 µs 1508 x

Red-Black Tree<string, string> 10 553 959.23 µs 150.63 µs 3676 x

S Ghorshi, L J Gunn, H Liljestrand, N Asokan, “Towards cryptographically authenticated in-memory data structures”, IEEE SecDev’22



20

Design challenges

Challenge: How to stop bad data being stored in the data structure?
Best solution: Pass data to protocol implementation via registers

14

…
r1, r2, … ⟵ id, data
call push

push:
pacia r5, r1, r2
…
ret

r1, r2, …

A

Challenge: Not all types fit into registers



21

Design challenges

Challenge: Not all types fit into registers
Workaround: Use coroutine-like “streaming” implementations

Easier solution: weaken the adversary model
15

Compute a bit

Accumulate data A

Compute some more

Accumulate data A

…



22

Fast A can write to memory at any time

Strongest attacker in a multithreaded setting.

Slow A can write to memory, but too imprecisely to do so between ops in a
single basic block

Models an attacker in a multithreaded program who can’t easily
synchronise between threads.

Single A can write to memory, but only when the program counter is at a
vulnerable address

Models an attacker exploiting vulnerabilities in a single-threaded program.

Different adversaries

S Ghorshi, L J Gunn, H Liljestrand, N Asokan, “Towards cryptographically authenticated in-memory data structures”, IEEE SecDev’22



23

Remaining challenges

Adversary models
• A – Slow definition is a bit arbitrary; is there a better alternative?

General computation
• How can we produce generic code that is safe under -Slow and -Fast models?
• Many computations can’t fit data into registers
• Compiler must emit code that cryptographically protects working storage

Multithreading
• How can we share authenticated data between threads?

17



No time to present this now, but ask me later about

Blinded Memory
Joint work with N. Asokan, Hossam ElAtali, Hans Liljestrand



25

Takeaways

Cryptography with hardware primitives can
secure critical functionality in vulnerable software

Crypto accelerators in current CPUs make this viable
• ~1% overhead for PACStack

23

gunn.ee


